Improve the Strength of PLA/HA Composite Through the Use of Surface Initiated Polymerization and Phosphonic Acid Coupling Agent
نویسندگان
چکیده
Bioresorbable composite made from degradable polymers, e.g., polylactide (PLA), and bioactive calcium phosphates, e.g., hydroxyapatite (HA), are clinically desirable for bone fixation, repair and tissue engineering because they do not need to be removed by surgery after the bone heals. However, preparation of PLA/HA composite from non-modified HA usually results in mechanical strength reductions due to a weak interface between PLA and HA. In this study, a calcium-phosphate/phosphonate hybrid shell was developed to introduce a greater amount of reactive hydroxyl groups onto the HA particles. Then, PLA was successfully grafted on HA by surface-initiated polymerization through the non-ionic surface hydroxyl groups. Thermogravimetric analysis indiated that the amount of grafted PLA on HA can be up to 7 %, which is about 50 % greater than that from the literature. PLA grafted HA shows significantly different pH dependent ζ-potential and particle size profiles from those of uncoated HA. By combining the phosphonic acid coupling agent and surface initiated polymerization, PLA could directly link to HA through covalent bond so that the interfacial interaction in the PLA/HA composite can be significantly improved. The diametral tensile strength of PLA/HA composite prepared from PLA-grafted HA was found to be over twice that of the composite prepared from the non-modified HA. Moreover, the tensile strength of the improved composite was 23 % higher than that of PLA alone. By varying additional variables, this approach has the potential to produce bioresorbable composites with improved mechanical properties that are in the range of natural bones, and can have wide applications for bone fixation and repair in load-bearing areas.
منابع مشابه
Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles
Titanium dioxide (TiO2) nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization in the presence of 3-aminopropyl triethoxy silane (APTES) as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide na...
متن کاملFunctional Properties of Biodegradable Nanocomposites from Poly Lactic Acid (PLA)
Nanocomposite composed of organoclay(Cloisite 20A-C20A) and Poly lactic acid (PLA) was prepared by solvent casting method. Physical, mechanical, thermal, barrier and microstructure properties of the composite were studied. X-Ray diffraction (XRD) patterns and scannin...
متن کاملAn evaluation on the effects of 37% phosphoric acid and self – etching primer on shear bond strength of enamel
An evaluation on the effects of 37% phosphoric acid and self – etching primer on shear bond strength of enamel Dr. A. Davari* - Dr. H. Hajizadeh* - Dr. H. Sharifikhatoonabadi** *- Assistant Professor of Operative Dentistry Dept. - Faculty of Dentistry - Yazd University of Medical Sciences. **- Dentist. Background and Aim: The goal of this study was to evaluate the effects of 37% phosphoric acid...
متن کاملInvestigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite
The objective of the present study is to develop and investigate the swelling behavior of pH-sensitive Superporous Hydrogel (SPH) and SPH composite (SPHC). A novel superporous hydrogel containing poly (methacrylic acid-co-acrylamide) was synthesized from methacrylic acid and acrylamide through the aqueous solution polymerization, using N,N-methylenebisacrylamide as a crosslinker and ammonium...
متن کاملSynthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite
Objective(s): The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO4)6(OH)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the te...
متن کامل